1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
| import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import numpy as np
import syft as sy hook = sy.TorchHook(torch) bob = sy.VirtualWorker(hook, id="bob") alice = sy.VirtualWorker(hook, id="alice")
workers = {} workers['bob'] = bob workers['alice'] = alice
secure_worker = sy.VirtualWorker(hook, id="secure_worker")
epochs = 10 local_epochs = 1
class Arguments(): def __init__(self): self.batch_size = 64 self.test_batch_size = 1000 self.epochs = epochs self.lr = 0.01 self.momentum = 0.5 self.no_cuda = False self.seed = 1 self.log_interval = 30 self.save_model = False
args = Arguments()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
federated_train_loader = sy.FederatedDataLoader( datasets.MNIST('./data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) .federate((bob, alice)), batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4*4*50, 500) self.fc2 = nn.Linear(500, 10)
def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4*4*50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1)
def train(args, models, device, federated_train_loader, epoch): for client_id in federated_train_loader.workers: model = models['global_model'].copy().send(workers[client_id]) model.train() optimizer =optim.SGD(params=model.parameters(), lr=0.1) one_client_train_loader = federated_train_loader.federated_dataset[client_id] dataset = sy.BaseDataset(one_client_train_loader.data, one_client_train_loader.targets) dataset = sy.FederatedDataset([dataset]) one_client_train_loader = sy.FederatedDataLoader(dataset, batch_size=32, shuffle=False, drop_last=False) for local_epoch in range(local_epochs): loss_per_local_epoch = [] for batch_idx, (data, target) in enumerate(one_client_train_loader): optimizer.zero_grad() data, target = data.to(device), target.to(device) output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() loss = loss.get() loss_per_local_epoch.append(loss.item()) print('client: {} , Train Global_Epoch: {}, Local_Epoch: {}, avg_loss: {} '.format( client_id, epoch, local_epoch,np.mean(loss_per_local_epoch))) models[client_id] = model.copy().get() return models
def fedAvg(arg,models,federated_train_loader): global_model = models['global_model'] global_state_dict = global_model.state_dict()
for key in global_state_dict.keys(): one_layer_weight_or_bias = global_state_dict[key].zero_()
for client_id in federated_train_loader.workers: model = models[client_id] one_layer_weight_or_bias += model.state_dict()[key].data.clone()
global_state_dict[key] = one_layer_weight_or_bias / len(federated_train_loader.workers)
global_model.load_state_dict(global_state_dict) models['global_model'] = global_model return models
def test(args, models, device, test_loader): model = models['global_model'] model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
global_model = Net().to(device) global_optimizer = optim.SGD(global_model.parameters(), lr=args.lr) bobs_model = global_model.copy().send(bob) alices_model = global_model.copy().send(alice) models = {} models['bob'] = bobs_model models['alice'] = alices_model models['global_model'] = global_model
for epoch in range(1, args.epochs + 1): models = train(args, models, device, federated_train_loader, epoch) models = fedAvg(args,models,federated_train_loader) test(args, models, device, test_loader)
if (args.save_model): torch.save(global_model.state_dict(), "mnist_cnn.pt")
|