1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
| import torch import syft as sy
from torch import nn from torch import optim from torchvision import datasets, transforms import torch.nn.functional as F
hook = sy.TorchHook(torch)
Li = sy.VirtualWorker(hook, id='li') Zhang = sy.VirtualWorker(hook, id='zhang')
class Arguments(): def __init__(self): self.batch_size = 64 self.test_batch_size = 128 self.epochs = 3 self.lr = 0.01 self.momentum = 0.5 self.no_cuda = False self.seed = 1 self.log_interval = 30 self.save_model = True
args = Arguments() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device('cuda' if use_cuda else 'cpu') kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
federated_train_loader = sy.FederatedDataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])).federate((Li, Zhang)), batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), ])), batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 5) self.conv2 = nn.Conv2d(32, 64, 5) self.pool1 = nn.MaxPool2d(2, 2) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool1(x) x = F.relu(self.conv2(x)) x = self.pool2(x) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) x = F.log_softmax(x, dim=1) return x
def train(args, model, device, federated_train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(federated_train_loader): model.send(data.location) data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() model.get() if batch_idx % args.log_interval == 0: loss = loss.get() print('Train Epoch : {} [ {} / {} ({:.0f}%)] \tLoss: {:.6f}'.format( epoch, batch_idx * args.batch_size, len(federated_train_loader) * args.batch_size, 100. * batch_idx / len(federated_train_loader), loss.item()))
def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: dataset, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set : Average loss : {:.4f}, Accuracy: {}/{} ( {:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=args.lr)
for epoch in range(1, args.epochs + 1): train(args, model, device, federated_train_loader, optimizer, epoch) test(args, model, device, test_loader)
if (args.save_model): torch.save(model.state_dict(), "mnist_cnn.pt")
|